Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Adv Pharmacol Pharm Sci ; 2024: 8273789, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495900

RESUMO

This research study aimed to investigate the chemical constituents and evaluate the antibacterial and antioxidant activities of stem latex extracts from the endemic medicinal plant Euphorbia arbuscula found on Socotra Island, Yemen. The study aimed to assess the potential medicinal and veterinary uses of this plant, representing the first evaluation of its properties. The stem latex was extracted using ethanol, and the resulting oil underwent analysis using GC-MS to identify eight compounds. In addition, chromatographic techniques were employed to isolate two triterpenoids, lanosterol and lupeol, from the stem latex. The structures of these compounds were confirmed using IR, MS, and NMR techniques. The antibacterial activity of the extracts and isolated compounds was evaluated against three bacterial strains using the disc diffusion method, revealing only weak antibacterial effects. The study also investigated the antioxidant activity using the DPPH assay, where the ethyl acetate extract exhibited the highest activity with an IC50 value of ±13.55 µg/mL, followed by the chloroform extract with an IC50 of ±21.87 µg/mL. These findings emphasize the potential of Euphorbia arbuscula in the development of new medicines, particularly due to its notable antioxidant activity. The research methodology employed a scientifically rigorous approach, utilizing a comprehensive range of analytical techniques. However, further investigation is required to fully assess the plant's potential as a therapeutic agent.

2.
Sensors (Basel) ; 23(12)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37420775

RESUMO

A wideband low-profile radiating G-shaped strip on a flexible substrate is proposed to operate as biomedical antenna for off-body communication. The antenna is designed to produce circular polarization over the frequency range 5-6 GHz to communicate with WiMAX/WLAN antennas. Furthermore, it is designed to produce linear polarization over the frequency range 6-19 GHz for communication with the on-body biosensor antennas. It is shown that an inverted G-shaped strip produces circular polarization (CP) of the opposite sense to that produced by G-shaped strip over the frequency range 5-6 GHz. The antenna design is explained and its performance is investigated through simulation, as well as experimental measurements. This antenna can be viewed as composed of a semicircular strip terminated with a horizontal extension at its lower end and terminated with a small circular patch through a corner-shaped strip extension at its upper end to form the shape of "G" or inverted "G". The purpose of the corner-shaped extension and the circular patch termination is to match the antenna impedance to 50 Ω over the entire frequency band (5-19 GHz) and to improve the circular polarization over the frequency band (5-6 GHz). To be fabricated on only one face of the flexible dielectric substrate, the antenna is fed through a co-planar waveguide (CPW). The antenna and the CPW dimensions are optimized to obtain the most optimal performance regarding the impedance matching bandwidth, 3dB Axial Ratio (AR) bandwidth, radiation efficiency, and maximum gain. The results show that the achieved 3dB-AR bandwidth is 18% (5-6 GHz). Thus, the proposed antenna covers the 5 GHz frequency band of the WiMAX/WLAN applications within its 3dB-AR frequency band. Furthermore, the impedance matching bandwidth is 117% (5-19 GHz) which enables low-power communication with the on-body sensors over this wide range of the frequency. The maximum gain and radiation efficiency are 5.37 dBi and 98%, respectively. The overall antenna dimensions are 25 × 27 × 0.13 mm3 and the bandwidth-dimension ratio (BDR) is 1733.


Assuntos
Comunicação , Tecnologia sem Fio , Desenho de Equipamento , Impedância Elétrica
3.
Cells ; 12(9)2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37174679

RESUMO

Bone Morphogenetic Protein 4 (BMP4) is a secreted growth factor of the Transforming Growth Factor beta (TGFß) superfamily. The goal of this study was to test whether BMP4 contributes to the pathogenesis of diabetic retinopathy (DR). Immunofluorescence of BMP4 and the vascular marker isolectin-B4 was conducted on retinal sections of diabetic and non-diabetic human and experimental mice. We used Akita mice as a model for type-1 diabetes. Proteins were extracted from the retina of postmortem human eyes and 6-month diabetic Akita mice and age-matched control. BMP4 levels were measured by Western blot (WB). Human retinal endothelial cells (HRECs) were used as an in vitro model. HRECs were treated with BMP4 (50 ng/mL) for 48 h. The levels of phospho-smad 1/5/9 and phospho-p38 were measured by WB. BMP4-treated and control HRECs were also immunostained with anti-Zo-1. We also used electric cell-substrate impedance sensing (ECIS) to calculate the transcellular electrical resistance (TER) under BMP4 treatment in the presence and absence of noggin (200 ng/mL), LDN193189 (200 nM), LDN212854 (200 nM) or inhibitors of vascular endothelial growth factor receptor 2 (VEGFR2; SU5416, 10 µM), p38 (SB202190, 10 µM), ERK (U0126, 10 µM) and ER stress (Phenylbutyric acid or PBA, 30 µmol/L). The impact of BMP4 on matrix metalloproteinases (MMP2 and MMP9) was also evaluated using specific ELISA kits. Immunofluorescence of human and mouse eyes showed increased BMP4 immunoreactivity, mainly localized in the retinal vessels of diabetic humans and mice compared to the control. Western blots of retinal proteins showed a significant increase in BMP4 expression in diabetic humans and mice compared to the control groups (p < 0.05). HRECs treated with BMP4 showed a marked increase in phospho-smad 1/5/9 (p = 0.039) and phospho-p38 (p = 0.013). Immunofluorescence of Zo-1 showed that BMP4-treated cells exhibited significant barrier disruption. ECIS also showed a marked decrease in TER of HRECs by BMP4 treatment compared to vehicle-treated HRECs (p < 0.001). Noggin, LDN193189, LDN212854, and inhibitors of p38 and VEGFR2 significantly mitigated the effects of BMP4 on the TER of HRECs. Our finding provides important insights regarding the role of BMP4 as a potential player in retinal endothelial cell dysfunction in diabetic retinopathy and could be a novel target to preserve the blood-retinal barrier during diabetes.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Camundongos , Humanos , Animais , Retinopatia Diabética/metabolismo , Células Endoteliais/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteína Morfogenética Óssea 4/farmacologia , Proteína Morfogenética Óssea 4/metabolismo , Retina/metabolismo , Diabetes Mellitus/metabolismo
4.
Comput Inform Nurs ; 41(1): 39-45, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35363630

RESUMO

Patients' attitudes toward sharing their personal health information are critical for implementation of health information exchange. Nurses contribute significantly to information sharing within the care continuum in hospitals and community. This study aimed to examine the awareness and readiness of patients with chronic illness and nurses to the use health information exchange. A cross-sectional study was conducted among 314 inpatients with a chronic illness, 110 nurses working in internal wards, and 55 contact nurses working in a large health maintenance organization. The findings showed that the mean level of awareness was low across all three groups. Contact nurses expressed more positive attitudes than internal ward nurses or patients and were more willing than patients to share information with healthcare workers. Knowledge, attitudes, and being a nurse predicted the intention to share information with medical healthcare providers and with agents not involved in direct care. Before implementation of a health information exchange system, it is important to raise awareness, readiness, and intention to use it among the public, nurses, and other medical staff. Policy makers should organize national campaigns under the auspices of the Ministry of Health to present the advantages and provide detailed information about the system.


Assuntos
Troca de Informação em Saúde , Enfermeiras e Enfermeiros , Humanos , Estudos Transversais , Pessoal de Saúde , Continuidade da Assistência ao Paciente , Doença Crônica , Atitude do Pessoal de Saúde , Inquéritos e Questionários
5.
Molecules ; 27(8)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35458585

RESUMO

The present study aims to characterize and predict models for antibacterial activity of a novel oligosaccharide from Streptomyces californics against Erwinia carotovora subsp. carotovora using an adaptive neuro-fuzzy inference system and an artificial neural network. The mathematical predication models were used to determine the optimal conditions to produce oligosaccharide and determine the relationship between the factors (pH, temperature, and time). The characteristics of the purified antibacterial agent were determined using ultraviolet spectroscopy (UV/Vis), infrared spectroscopy (FT-IR), nuclear magnetic resonance spectroscopy (1H- and 13C-NMR), and mass spectrometry (MS). The best performances for the model were 39.45 and 35.16 recorded at epoch 1 for E. carotovora Erw5 and E. carotovora EMCC 1687, respectively. The coefficient (R2) of the training was more than 0.90. The highest antimicrobial production was recorded after 9 days at 25 °C and a pH of 6.2, at which more than 17 mm of the inhibition zone was obtained. The mass spectrum of antimicrobial agent (peak at R.T. = 3.433 of fraction 6) recorded two molecular ion peaks at m/z = 703.70 and m/z = 338.30, corresponding to molecular weights of 703.70 and 338.30 g/mol, respectively. The two molecular ion peaks matched well with the molecular formulas C29H53NO18 and C14H26O9, respectively, which were obtained from the elemental analysis result. A novel oligosaccharide from Streptomyces californics with potential activity against E. carotovora EMCC 1687 and E. carotovora Erw5 was successfully isolated, purified, and characterized.


Assuntos
Erwinia , Streptomyces , Antibacterianos/farmacologia , Oligossacarídeos/farmacologia , Pectobacterium , Pectobacterium carotovorum , Espectroscopia de Infravermelho com Transformada de Fourier
6.
Biol Trace Elem Res ; 200(12): 5218-5225, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34997923

RESUMO

This study aimed to investigate the effects of different levels of zinc oxide nanoparticles on broilers' performance, nutrient digestibility, carcass criteria, and blood biochemistry. A total of 120 1-day-old unsexed broiler chickens (Ross 308) were fed zinc oxide nanoparticles at different levels (0, 20, 40, or 60 mg/kg) in their diets. Each treatment included 6 replicate pens with 5 birds each. The experiment lasted 42 days. The brooding temperatures were 37.8 °C, 35.8 °C, and 29.9 °C during 1-10 days, 11-21 days, and 22-42 days of age, respectively. The results revealed that dietary supplementation of nanoparticles of zinc oxide at 20, 40, and 60 mg/kg diet significantly improved body weight, body weight gain, and feed conversion ratio showing linear effects (P < 0.05) compared to the birds fed the control diet under hot climatic conditions. Dietary addition of zinc oxide nanoparticles at 20, 40, and 60 mg/kg linearly increased (P < 0.05) the nutrient digestibility of crude protein, crude fiber, and ether extract compared to the control group. Birds fed the supplemented diets had improved liver and kidney function without any negative effects on zinc, inorganic phosphorus, triiodothyronine (T3), and thyroxine (T4) levels in serum compared to the control. Diets supplemented with zinc oxide nanoparticles linearly (P < 0.05) improved the dressing percent and reduced abdominal fat percent compared to the control group. In view of the above findings, it can be concluded that dietary supplementations of zinc oxide nanoparticles at 20, 40, and 60 mg/kg resulted in improved growth performance, nutrient digestibility, carcass criteria, and liver and kidney functions of broiler chickens under hot environmental conditions.


Assuntos
Nanopartículas , Óxido de Zinco , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Galinhas/metabolismo , Dieta/veterinária , Suplementos Nutricionais , Éteres/metabolismo , Fósforo/metabolismo , Extratos Vegetais/metabolismo , Tiroxina , Tri-Iodotironina , Aumento de Peso , Zinco/metabolismo , Óxido de Zinco/farmacologia
7.
PLoS One ; 16(10): e0258755, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34669748

RESUMO

The General Organization of the Veterinary Services in Egypt has adopted a sheeppox vaccination policy to control lumpy skin disease (LSD) in cattle. Over the course of the last two years, recurrent outbreaks were reported, with animals showing severe clinical signs and consequentially higher fatalities than that of cases reported in previous LSD outbreaks. A total of 1050 cattle showing typical clinical signs suggestive of LSD were clinically and pathologically investigated during 2017-2018. Skin nodules were collected and lumpy skin disease virus (LSDV) was screened in collected skin samples using PCR for the RPO-30 gene. Furthermore, the entire P32 protein coding gene was sequenced. Histopathology and immunohistochemistry of the skin nodules were also conducted. The obtained results showed an overall mortality rate of 6.86%. LSDV was confirmed in all the examined nodules as evidenced by immunohistochemistry and positive PCR amplification of the RPO30 gene. Sequencing analysis of the P32 gene revealed a highly conserved nature and genetic stability of the LSDV. The results of the present study show that the current vaccination protocol was not effective for a multitude of reasons. These results also serve as evidence for a strong recommendation of an amendment of homologous vaccine use aside from a complete coverage of cattle populations in order to reduce the incidence of LSD among cattle population in Egypt.


Assuntos
Surtos de Doenças/veterinária , Doença Nodular Cutânea/epidemiologia , Vírus da Doença Nodular Cutânea/classificação , Vacinação/veterinária , Proteínas Virais/genética , Animais , Bovinos , Egito/epidemiologia , Evolução Molecular , Feminino , Doença Nodular Cutânea/mortalidade , Doença Nodular Cutânea/virologia , Vírus da Doença Nodular Cutânea/genética , Vírus da Doença Nodular Cutânea/isolamento & purificação , Masculino , Mortalidade , Filogenia , Análise de Sequência de DNA
8.
Tissue Eng Part A ; 27(5-6): 402-412, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32746770

RESUMO

Delayed bone healing is a major challenge in orthopedic clinical practice, highlighting a need for technologies to overcome ineffective cell growth and osteogenic differentiation. The objective of this study was to investigate the synergistic effects of the PhysioStim (PEMF) signal with iron-ion doped tri-calcium phosphate bone substitute on human mesenchymal stem cell (hMSC) osteogenesis in vitro. Intrinsically magnetic nano-bone substitutes (MNBS) were developed with single particles on the order of 100 nm, saturation magnetization of 0.425 emu/g, and remanent magnetization of 0.013 emu/g. MNBS were added to hMSC culture and cell viability, alkaline phosphatase (ALP) activity, mineralization, and osteogenic gene expression in the presence and absence of PEMF were quantified for up to 10 days. MNBS attached to the surface of and were internalized by hMSCs when cultured together for 4 days and had no impact on cell viability with PEMF exposure for up to 7 days. Although total ALP activity was significantly increased with PEMF treatment alone, with a peak at day 5, PEMF combined with MNBS significantly increased ALP activity, with a peak at day 3, compared with all other groups (p < 0.01). The shift can be explained by significantly increased extracellular ALP activity beginning at day 2 (p < 0.01). PEMF combined with MNBS demonstrated continuously increasing mineralization overtime, with significantly greater Alizarin Red S concentration compared with all other groups at day 7 (p < 0.01). Increases in ALP activity and mineral content were in agreement with osteogenic gene expression that demonstrated peak ALP gene expression at day 1, and upregulated BMP-2, BGLAP, and SPP1 gene expression at day 7 (p < 0.05). The results of this study demonstrate the synergistic effects of PEMF and MNBS on osteogenesis and suggest that PEMF and MNBS may provide a method for accelerated bone healing.


Assuntos
Nanopartículas de Magnetita , Osteogênese , Fosfatase Alcalina , Diferenciação Celular , Células Cultivadas , Campos Eletromagnéticos , Humanos , Campos Magnéticos , Osteoblastos
10.
AAPS PharmSciTech ; 21(8): 326, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33206259

RESUMO

Brucellosis is a common zoonotic infection, particularly in the developing world. The recommended treatment regimens for brucellosis involve the use of two medications such as doxycycline and curcumin in order to avoid relapses and prolonged use of these drugs. Doxycycline has excellent activity in the acidic phagolysosomal environment, while curcumin modulates the immune system function and macrophage activity. Due to the intracellular existence of Brucellae and the different anti-immune mechanisms of Brucella, the treatment of Brucella infection faces many limitations. The design of nanosystems is a promising treatment approach for brucellosis. The objective of this study was to design and evaluate the efficacy of in situ pH-responsive curcumin-loaded niosome hydrogel and doxycycline-loaded chitosan-sodium alginate nanoparticles as chemotherapeutic agents against brucellosis. The prepared formulae showed a spherical nano shape with a slow drug release pattern and small particle size. The prepared formulae were evaluated in vivo using Guinea pigs experimentally infected with Brucella melitensis biovar3. The prepared formula combination gave a significant high reduction rate of Brucella spleen viable count compared with that of untreated controls at p < 0.05. The results showed that the treatment schemes were not fully successful in eliminating Brucella infection in Guinea pigs; however, they significantly (p < 0.05) reduced the viable Brucella count in a shorter time and sub-therapeutic doses. Collectively the novel prepared formulae could be a successful therapy for the effective treatment of brucellosis infection at the recommended therapeutic doses. Graphical abstract.


Assuntos
Alginatos/química , Antibacterianos/uso terapêutico , Brucelose/tratamento farmacológico , Quitosana/química , Curcumina/uso terapêutico , Doxiciclina/uso terapêutico , Hidrogéis/química , Lipossomos , Nanopartículas/administração & dosagem , Animais , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Brucella melitensis/efeitos dos fármacos , Curcumina/administração & dosagem , Curcumina/farmacologia , Doxiciclina/farmacologia , Cobaias
11.
J Clin Med ; 9(7)2020 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-32707711

RESUMO

Disruption of retinal pigment epithelial (RPE) barrier integrity and RPE migration are hallmark features in neovascular age-related macular degeneration (nAMD), but the underlying causes and pathophysiology are not completely well-defined. Herein, we aimed to evaluate the effect of bone morphogenetic proteins (BMPs) on the barrier function and migration of RPE. In particular, we investigated the role of BMP2 and BMP4 in these processes as our analysis of RNA-sequencing (seq) data from human donor eyes demonstrated that they are highly differentially expressed BMP members in macular RPE/choroid versus macular retina. We used electrical cell-substrate impedance sensing (ECIS) system to monitor precisely in real time the barrier integrity and migration of ARPE-19 after treatment with various concentrations of BMP2 or BMP4. Immunofluorescence was also used to assess the changes in the expression and the organization of the key tight junction protein, zona occludens (ZO)-1, in ARPE-19 cells under BMP2 or BMP4 treatment. This was followed by measuring the activity of matrix metalloproteinases (MMPs). Finally, RNA-seq and ELISA were used to determine the local and circulating levels of BMP2 and BMP4 in retinas and serum samples from nAMD donors. Our ECIS results showed that BMP4 but not BMP2 decreased the transcellular electrical resistance (TER) of ARPE-19 and increased their migration in comparison with control (vehicle-treated cells). Furthermore, immunofluorescence showed a disorganization of ZO-1 in BMP4-treated ARPE-19 not in BMP2-treated cells or vehicle-treated controls. This effect of BMP4 was associated with significant increases in the activity of MMPs, specifically MMP2. Lastly, these results were corroborated by additional findings that circulating but not local BMP4 levels were significantly higher in nAMD donor samples compared to controls. Collectively, our results demonstrated unreported effects of BMP4 on inducing RPE dysfunction and suggest that BMP4 but not BMP2 may represent a potential therapeutic target in nAMD.

12.
Bone Rep ; 12: 100270, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32395570

RESUMO

Mechanisms leading to age-related reductions in bone formation and subsequent osteoporosis are still incompletely understood. We recently demonstrated that kynurenine (KYN), a tryptophan metabolite, accumulates in serum of aged mice and induces bone loss. Here, we report on novel mechanisms underlying KYN's detrimental effect on bone aging. We show that KYN is increased with aging in murine bone marrow mesenchymal stem cells (BMSCs). KYN reduces bone formation via modulating levels of CXCL12 and its receptors as well as histone deacetylase 3 (Hdac3). BMSCs responded to KYN by significantly decreasing mRNA expression levels of CXCL12 and its cognate receptors, CXCR4 and ACKR3, as well as downregulating osteogenic gene RUNX2 expression, resulting in a significant inhibition in BMSCs osteogenic differentiation. KYN's effects on these targets occur by increasing regulatory miRNAs that target osteogenesis, specifically miR29b-1-5p. Thus, KYN significantly upregulated the anti-osteogenic miRNA miR29b-1-5p in BMSCs, mimicking the up-regulation of miR-29b-1-5p in human and murine BMSCs with age. Direct inhibition of miR29b-1-5p by antagomirs rescued CXCL12 protein levels downregulated by KYN, while a miR29b-1-5p mimic further decreased CXCL12 levels. KYN also significantly downregulated mRNA levels of Hdac3, a target of miR-29b-1-5p, as well as its cofactor NCoR1. KYN is a ligand for the aryl hydrocarbon receptor (AhR). We hypothesized that AhR mediates KYN's effects in BMSCs. Indeed, AhR inhibitors (CH-223191 and 3',4'-dimethoxyflavone [DMF]) partially rescued secreted CXCL12 protein levels in BMSCs treated with KYN. Importantly, we found that treatment with CXCL12, or transfection with an miR29b-1-5p antagomir, downregulated the AhR mRNA level, while transfection with miR29b-1-5p mimic significantly upregulated its level. Further, CXCL12 treatment downregulated IDO, an enzyme responsible for generating KYN. Our findings reveal novel molecular pathways involved in KYN's age-associated effects in the bone microenvironment that may be useful translational targets for treating osteoporosis.

13.
J Clin Med ; 9(2)2020 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-32024241

RESUMO

ADAM17, a disintegrin and metalloproteinase 17, is a transmembrane metalloproteinase that regulates bioavailability of multiple membrane-bound proteins via ectodomain shedding. ADAM17 activity was shown to contribute to a number of vascular pathologies, but its role in the context of diabetic retinopathy (DR) is not determined. We found that expression and enzymatic activity of ADAM17 are upregulated in human diabetic postmortem retinas and a mouse model of streptozotocin-induced diabetes. To further investigate the contribution of ADAM17 to vascular alterations associated with DR, we used human retinal endothelial cells (HREC) treated with ADAM17 neutralizing antibodies and exposed to glucidic stress and streptozotocin-induced endothelial ADAM17 knockout mice. Evaluation of vascular permeability, vascular inflammation, and oxidative stress was performed. Loss of ADAM17 in endothelial cells markedly reduced oxidative stress evidenced by decreased levels of superoxide, 3-nitrotyrosine, and 4-hydroxynonenal and decreased leukocyte-endothelium adhesive interactions in vivo and in vitro. Reduced leukostasis was associated with decreased vascular permeability and was accompanied by downregulation of intercellular adhesion molecule-1 expression. Reduction in oxidative stress in HREC was associated with downregulation of NAD(P)H oxidase 4 (Nox4) expression. Our data suggest a role for endothelial ADAM17 in DR pathogenesis and identify ADAM17 as a potential new therapeutic target for DR.

14.
Front Immunol ; 11: 568795, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33584642

RESUMO

The mechanisms of diabetic retinopathy (DR), are not yet fully understood. We previously demonstrated an upregulation of retinal bone morphogenetic protein-2 (BMP2) in experimental diabetes and in retinas of diabetic human subjects. The purpose of current study was to investigate the role of non-canonical inflammatory pathway in BMP2-induced retinal endothelial cell (REC) barrier dysfunction. For this purpose, we used RT-PCR and western blotting to evaluate the levels of BMP2 signaling components (BMP2, BMP4, BMP receptors), VEGF, phosphorylated p38 MAPK and NFκB, and oxidative stress markers in cultured human retinal endothelial cells (HRECs) subjected to BMP2 (50ng/ml) for up to 24 h. Also, effect of high glucose (HG, 30mM D-glucose) on the expression of BMP2 and its downstream genes was examined in HRECs. H2-DCF is a fluorogenic dye that measures the levels of cellular reactive oxygen species (ROS) was used to measure the pro-oxidative effect of BMP2. Moreover, we evaluated the effect of inhibiting p38 and VEGF signaling on BMP2-induced HRECs barrier dysfunction by measuring the trans-endothelial cell electrical resistance (TER) using electric cell-substrate impedance sensing (ECIS). We also tested the effect of HG on the integrity of HRECs barrier in the presence or absence of inhibitors of BMP2 signaling. Our data reveals that BMP2 and high glucose upregulates BMP components of the BMP signaling pathway (SMAD effectors, BMP receptors, and TGFß ligand itself) and induces phosphorylation of p38 MAPK and NFκB with nuclear translocation of NFκB. Inhibition of p38 or NFκB attenuated BMP2-induced VEGF expression and barrier dysfunction in HRECs. Also, inhibition of VEGFR2 attenuated BMP2-induced barrier dysfunction. Moreover, BMP2 induces generation of ROS and endothelial nitric oxide synthase (eNOS) expression and activity in HRECs. Finally, HG upregulated BMP2 and its downstream genes (SMAD, BMP4, ALKs, and TGF-ß) in HRECs and BMP2 inhibitors attenuated HG-induced HRECs barrier dysfunction. Our results suggest that in addition to the regular canonical SMAD signaling BMP2 induces non-canonical inflammatory pathway in HRECs via activation of p38/NFκB pathway that causes the upregulation of VEGF and the disruption of HRECs. Inhibition of BMP2 signaling is a potential therapeutic intervention to preserve endothelial cell barrier function in DR.


Assuntos
Proteína Morfogenética Óssea 2/imunologia , Células Endoteliais/imunologia , Retina/citologia , Animais , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Tipo 1/imunologia , Retinopatia Diabética/imunologia , Humanos , Inflamação/imunologia , Camundongos Endogâmicos C57BL , Estresse Oxidativo
15.
Indian J Anaesth ; 63(12): 1001-1007, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31879424

RESUMO

BACKGROUND AND AIMS: Cardiovascular diseases and cancer are among the leading causes of mortality worldwide. The aim of this study is to evaluate the efficacy and safety of preoperative administration of levosimendan in patients with chronic heart failure (CHF) scheduled for major abdominal oncologic surgery. METHODS: This study included 60 patients with abdominal malignancy, ejection fraction (EF) <35% and CHF scheduled for surgery under isoflurane-fentanyl anaesthesia and were managed in the surgical intensive care unit perioperatively. They were randomised to receive levosimendan infusion (n = 30) at a dose of 0.1 µg/kg/min or placebo (n = 30) for 24 hours before surgery. RESULTS: The risk of hypotension (RR: 0.40, 95% CI: 0.19-0.83) or decompensated heart failure (RR: 0.31, 95% CI: 0.12-0.76) was significantly lower in the levosimendan group. The ejection fraction, cardiac index and stroke volume index were significantly higher in the levosimendan group after surgery (P < 0.001). Duration of postoperative ventilation and hospital stay were significantly shorter in the levosimendan group (P < 0.001) while the frequency of dysrhythmia, deterioration of renal function and sepsis was comparable. CONCLUSION: In patients with low EF <35% and CHF, administration of levosimendan for 24 hours before major abdominal oncologic surgeries may reduce the risk of hypotension and decompensated heart failure and may improve cardiac function.

16.
Open Access Maced J Med Sci ; 7(15): 2440-2443, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31666843

RESUMO

AIM: Describe the efficacy and safety of valproate and haloperidol infusion in controlling agitation in the intensive care unit (ICU). MATERIAL AND METHODS: Prospective study on 100 critically ill patients with agitation in Kasralainy Hospital over the period from May 2016 to June 2017.patients were divided into two groups, each group included 50 patients, 1st group patients received Depakene orally, and 2nd group patients received haloperidol by i.v infusion for 72 h. Richmond agitation sedation score and doses of additional sedative drugs were noted and calculated daily in the first three days. RESULTS: Our study showed that valproate was equal in efficacy in controlling agitation; decreasing the RAAS significantly after 48 h from initiation (2.52 ± 0.61 vs 0.28 ± 0.54 with p < 0.001) for Depakene and (2.6 ± 0.67 vs 0.34 ± 0.48 with p < 0.001) for haloperidol. There was also a decrease in the doses of additional sedative drugs used to control agitation (midazolam & propofol) after 48 h from drug initiation. Both drugs therapy was associated with decrease in heart rate (89 ± 20 vs 86.6 ± 13.6 with p = 0.002 for valproate and 99.8 ± 23.3 vs 91 ± 16.7 with p < 0.001 for haloperidol). They did not affect blood pressure. Haloperidol therapy was associated with significant QTc prolongation. CONCLUSION: Valproate was equal in efficacy as haloperidol infusion in controlling agitation in ICU and decreasing the doses of additional sedative drugs used after 48 h from initiation.

17.
Biopharm Drug Dispos ; 40(7): 217-224, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31242332

RESUMO

PURPOSE: Topical nonsteroidal anti-inflammatory drug formulations are used commonly to treat musculoskeletal pain and inflammation. Drug properties and formulation composition are the primary determinants of the transdermal drug delivery rate. The ex vivo transdermal flux through human skin of three topical diclofenac formulations was compared. METHODS: The formulations tested were hydrogel 1% diclofenac sodium and two emulsion gels (1.16%/2.32% diclofenac diethylamine, equivalent to 1%/2% diclofenac sodium). Human abdominal skin obtained during unrelated surgical procedures was stored at -20 °C until use. Skin specimens were thawed, prepared and placed in Franz diffusion cells (stratum corneum facing donor cell). The test formulation (~200 mg) was applied to the donor cell skin surface, and the receptor compartment was periodically sampled over 48 hours. The drug concentration in the receptor medium was determined by a validated HPLC method. Raman spectral imaging was performed to visualize the location and distribution of diclofenac. RESULTS: After 5 hours, the cumulative amount of hydrogel diclofenac transiting the skin was about 10 times that of the emulsion gel 1.16% (P=0.0004) and about twice that of the emulsion gel 2.32% (P=0.022). Similar results were seen after 9 hours. Raman spectroscopy showed that the hydrogel formulation was a homogeneous mixture of its various components, including diclofenac. The emulsion gels were non-homogeneous, with diclofenac in close proximity to the lipophilic (paraffin) phase. CONCLUSIONS: The transdermal transit of diclofenac from the hydrogel demonstrated a faster onset and a greater absorption rate than either emulsion gel formulation, suggesting that the hydrogel formulation may have a faster onset of action in underlying tissues vs. the emulsion gel products.


Assuntos
Anti-Inflamatórios não Esteroides/administração & dosagem , Diclofenaco/administração & dosagem , Hidrogéis/administração & dosagem , Absorção Cutânea/efeitos dos fármacos , Pele/efeitos dos fármacos , Feminino , Humanos , Técnicas In Vitro , Permeabilidade/efeitos dos fármacos , Pele/metabolismo
18.
Stem Cells Int ; 2019: 3826054, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31089328

RESUMO

The aim of this study is to review all the published clinical trials on autologous bone marrow mesenchymal stem cells (BM-MSCs) in the repair of cartilage lesions of the knee. We performed a comprehensive search in three electronic databases: PubMed, Medline via Ovid, and Web of Science. A systematic review was conducted according to the guidelines of PRISMA protocol and the Cochrane Handbook for Systematic Reviews of Interventions. The modified Coleman methodology score was used to assess the quality of the included studies. Meta-analysis was conducted to estimate the effect size for Pain and function change after receiving BM-MSCs. Thirty-three studies-including 724 patients of mean age 44.2 years-were eligible. 50.7% of the included patients received cultured BM-MSCs for knee cartilage repair. There was improvement in the MINORS quality score over time with a positive correlation with the publication year. Meta-analysis indicated better improvement and statistical significance in the Visual Analog Scale for Pain, IKDC Function, Tegner Activity Scale, and Lysholm Knee Score after administration of noncultured BM-MSCs when compared to evaluation before the treatment. Meanwhile, there was a clear methodological defect in most studies with an average modified Coleman methodology score (MCMS) of 55. BM-MSCs revealed a clinically relevant improvement in pain, function, and histological regeneration.

19.
Pharmacol Ther ; 198: 90-108, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30759373

RESUMO

Dipeptidyl peptidase 4 (DPP4) is an exopeptidase found either on cell surfaces where it is highly regulated in terms of its expression and surface availability (CD26) or in a free/circulating soluble constitutively available and intrinsically active form. It is responsible for proteolytic cleavage of many peptide substrates. In this review we discuss the idea that DPP4-cleaved peptides are not necessarily inactivated, but rather can possess either a modified receptor selectivity, modified bioactivity, new antagonistic activity, or even a novel activity relative to the intact parent ligand. We examine in detail five different major DPP4 substrates: glucagon-like peptide 1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), peptide tyrosine-tyrosine (PYY), and neuropeptide Y (NPY), and stromal derived factor 1 (SDF-1 aka CXCL12). We note that discussion of the cleaved forms of these five peptides are underrepresented in the research literature, and are both poorly investigated and poorly understood, representing a serious research literature gap. We believe they are understudied and misinterpreted as inactive due to several factors. This includes lack of accurate and specific quantification methods, sample collection techniques that are inherently inaccurate and inappropriate, and a general perception that DPP4 cleavage inactivates its ligand substrates. Increasing evidence points towards many DPP4-cleaved ligands having their own bioactivity. For example, GLP-1 can work through a different receptor than GLP-1R, DPP4-cleaved GIP can function as a GIP receptor antagonist at high doses, and DPP4-cleaved PYY, NPY, and CXCL12 can have different receptor selectivity, or can bind novel, previously unrecognized receptors to their intact ligands, resulting in altered signaling and functionality. We believe that more rigorous research in this area could lead to a better understanding of DPP4's role and the biological importance of the generation of novel cryptic ligands. This will also significantly impact our understanding of the clinical effects and side effects of DPP4-inhibitors as a class of anti-diabetic drugs that potentially have an expanding clinical relevance. This will be specifically relevant in targeting DPP4 substrate ligands involved in a variety of other major clinical acute and chronic injury/disease areas including inflammation, immunology, cardiology, stroke, musculoskeletal disease and injury, as well as cancer biology and tissue maintenance in aging.


Assuntos
Citocinas/metabolismo , Dipeptidil Peptidase 4/metabolismo , Hormônios Peptídicos/metabolismo , Animais , Humanos , Ligantes , Proteólise
20.
Diabetologia ; 61(5): 1220-1232, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29468369

RESUMO

AIMS/HYPOTHESIS: Our earlier studies have established the role of 12/15-lipoxygenase (LO) in mediating the inflammatory reaction in diabetic retinopathy. However, the exact mechanism is still unclear. The goal of the current study was to identify the potential role of endoplasmic reticulum (ER) stress as a major cellular stress response in the 12/15-LO-induced retinal changes in diabetic retinopathy. METHODS: We used in vivo and in vitro approaches. For in vivo studies, experimental diabetes was induced in wild-type (WT) mice and 12/15-Lo (also known as Alox15) knockout mice (12/15-Lo-/-); ER stress was then evaluated after 12-14 weeks of diabetes. We also tested the effect of intravitreal injection of 12-hydroxyeicosatetraenoic acid (HETE) on retinal ER stress in WT mice and in mice lacking the catalytic subunit of NADPH oxidase, encoded by Nox2 (also known as Cybb) (Nox2-/- mice). In vitro studies were performed using human retinal endothelial cells (HRECs) treated with 15-HETE (0.1 µmol/l) or vehicle, with or without ER stress or NADPH oxidase inhibitors. This was followed by evaluation of ER stress response, NADPH oxidase expression/activity and the levels of phosphorylated vascular endothelial growth factor receptor-2 (p-VEGFR2) by western blotting and immunoprecipitation assays. Moreover, real-time imaging of intracellular calcium (Ca2+) release in HRECs treated with or without 15-HETE was performed using confocal microscopy. RESULTS: Deletion of 12/15-Lo significantly attenuated diabetes-induced ER stress in mouse retina. In vitro, 15-HETE upregulated ER stress markers such as phosphorylated RNA-dependent protein kinase-like ER-regulated kinase (p-PERK), activating transcription factor 6 (ATF6) and protein disulfide isomerase (PDI) in HRECs. Inhibition of ER stress reduced 15-HETE-induced-leucocyte adhesion, VEGFR2 phosphorylation and NADPH oxidase expression/activity. However, inhibition of NADPH oxidase or deletion of Nox2 had no effect on ER stress induced by the 12/15-LO-derived metabolites both in vitro and in vivo. We also found that 15-HETE increases the intracellular calcium in HRECs. CONCLUSIONS/INTERPRETATION: ER stress contributes to 12/15-LO-induced retinal inflammation in diabetic retinopathy via activation of NADPH oxidase and VEGFR2. Perturbation of calcium homeostasis in the retina might also play a role in linking 12/15-LO to retinal ER stress and subsequent microvascular dysfunction in diabetic retinopathy.


Assuntos
Araquidonato 15-Lipoxigenase/metabolismo , Retinopatia Diabética/metabolismo , Estresse do Retículo Endoplasmático , Retículo Endoplasmático/metabolismo , Vasos Retinianos/metabolismo , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/química , Animais , Apoptose , Cálcio/metabolismo , Domínio Catalítico , Linhagem Celular , Células Endoteliais/metabolismo , Humanos , Inflamação , Leucócitos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , NADPH Oxidases/metabolismo , Fosforilação , Transdução de Sinais , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...